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Abstract

In this paper, a novel extension neural network (ENN) is proposed. This new neural network is a combination of extension theory and

neural network. It uses an extension distance (ED) to measure the similarity between data and cluster center. The learning speed of the

proposed ENN is shown to be faster than the traditional neural networks and other fuzzy classification methods. Moreover, the new scheme

has been proved to have high accuracy and less memory consumption. Experimental results from two different examples verify the

effectiveness and applicability of the proposed work.
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1. Introduction

Neural networks are parallel systems used for solving

regression and classification problems in many fields

(Carpenter, Grossberg, & Rosen, 1991; Kohonen, 1988;

Rumelhart & McClelland, 1986; Specht, 1990). They can

estimate a relation function between the inputs and outputs

from a learning process, and also can discover the mapping

form feature space into space of classes. Classification or

cluster analysis is one of the most important applications of

neural networks. The goal of classification is to partition a

set of patterns into a group of desired subsets. There are

many popular methods for applying neural networks to

pattern recognition such as, multiplayer perceptrons (MLP)

(Rumelhart & McClelland, 1986), Kohonen neural net-

works (KNN) (Kohonen, 1988), probabilistic neural net-

work (PNN) (Specht, 1990), learning vector quantization

(LVQ) (Bezdek & Pal, 1995), counter propagation networks

(CPN) (Hecht-Nielaen, 1987), and adaptive resonance

theory (ART) networks (Carpenter et al., 1991). There

have been many successful applications in many fields.

The MLP is a continuous input and output pattern

recognition, it experts in supervised learning. The most

popular training method is error-back-propagation. The

drawbacks are that it is not a good strategy to decide

the number of neurons in hidden layers and it is

time-consuming in training. The KNN is unsupervised

training pattern recognition. It employs a winner-take-all

learning strategy to store similar patterns in one neuron.

KNN has good applications in phonetic or image pattern

recognition, but it is not a good strategy to decide the

learning parameters and the region of neighborhood. The

ART network is an unsupervised learning and adaptive

pattern recognition system. It can quickly and stably learn

to categorize input patterns and permit an adaptive process

for significant and new information. On the other hand,

many methods have been proposed to design fuzzy

classification systems for dealing with fuzzy classification

problems (Hong & Chen, 1999, 2000; Wang, Liu, Hong, &

Tseng, 1999; Yu and Chen, 2002). The fuzzy approaches

can take human expertise, and have been successfully

applied in this field. However, there are some intrinsic

shortcomings, such as the difficulty of acquiring knowledge

and maintaining a database.

In our world, there are some classification problems

whose features are defined in a range. For example, boys can

be defined as a cluster of men from age 1 to 14 and the

permitted operation voltages of a specified motor may be

between 100 and 120 V. For these problems, it is not easy to

implement an appropriate classification method using

current neural networks. Therefore, a new neural network

topology, called the extension neural network (ENN) is

proposed to solve these problems in this paper. In other

words, the ENN permits classification of problems, which

have range features, supervised learning, or continuous

input and discrete output. This new neural network is
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a combination of the extension theory (Cai, 1983; Huang &

Chen, 1999; Wang & Chen, 2001) and the neural network,

the ENN uses a modified extension distance (ED) to

measure the similarity between data and cluster center; it

permits adaptive process for significant and new infor-

mation, and gives shorter learning times than traditional

neural networks. Moreover, this ENN has shown higher

accuracy, less memory consumption in application.

2. Review of extension theory

Extension theory was originally invented by Cai to solve

contradictions and incompatibility problems in 1983 (Cai,

1983). The extension set extends the fuzzy set from [0,1] to

(21, 1). As a result, it allows us to define a set that

includes any data in the domain.

2.1. Matter-element theory

(1) Definition of matter-element

Defining the name of a matter by N; one of the

characteristics of the matter by c; and the value of c by v;

we can use an ordered ternary R ¼ ðN; c; vÞ as the

fundamental element to state a matter and call it a matter-

element in extension theory. For example, R ¼ (Wang,

Weight, 80 kg) can be used to state that Wang’s weight is

80 kg. If the value of the characteristic has a classical

domain or a range, we define the matter-element for the

classical domain as follows:

R ¼ ðN; c;WÞ ¼ ðN; c; kwL
;wUlÞ ð1Þ

Where wL and wU are the lower bound and upper bound of

classical domains, respectively.

(2) Multi-dimensional matter-element

If R ¼ ðN;C;VÞ is a multi-dimensional matter-element,

C ¼ ½c1; c2;…; cn� a characteristic vector and V ¼

½v1; v2;…vn� a value vector of C; then a multi-dimensional

matter-element is defined as follows:

R ¼ ðN;C;VÞ ¼

N; c1; v1

c2; v2

..

.

cn; vn

2
66666664

3
77777775

¼

R1

R2

..

.

Rn

2
66666664

3
77777775

ð2Þ

Where Ri ¼ ðN; ci; viÞði ¼ 1; 2…nÞ is the sub-matter-

element of R:

2.2. Summary of extension set theory

(1) Definition of extension set

If U is a space of objects and x a generic element of U;

then an extension set A in U is defined as a set of ordered

pairs:

A ¼ {ðu; yÞlu [ U; y ¼ KðxÞ [ ð21;1Þ} ð3Þ

Where y ¼ KðxÞ is called the relational function for

extension set A: The KðxÞ maps each element of U to a

membership grade between 21 and 1. The higher the

degree, the closer the element belongs to the set.

(2) Primitively extended relation function

Let Xo ¼ ka; bl; X ¼ kc; dl and Xo [ X; then the

extended relation function can be defined as follows:

KðxÞ ¼
rðx;XoÞ

Dðx;Xo;XÞ
ð4Þ

where

rðx;XoÞ ¼ x 2
a þ b

2

����
����2 b 2 a

2
ð5Þ

Dðx;Xo;XÞ ¼
rðx;XÞ2 rðx;XoÞ x � Xo

21 x [ Xo

(
ð6Þ

When KðxÞ $ 0; it can describe the degree to which x

belongs to Xo and KðxÞ , 0 can describe the degree to

which x does not belong to Xo: Apparently, those values that

are not inside the set are not discussed in the fuzzy set.

When 21 , KðxÞ , 0; this domain is called an extension

domain, which means that the element x still has a chance to

become an element of the set.

3. Extension neural network

The proposed ENN is a combination of the neural

network and the extension theory. The extension theory

proves a novel distance measurement for classification

processes, and the neural network can embed the salient

features of parallel computation power and learning

capability. In other words, the ENN permits classification

of problems, which have range features, supervised

learning, or continuous input and discrete output.

3.1. Structure of ENN

The schematic structure of the ENN is depicted in Fig. 1.

It comprises both the input layer and the output layer. The

nodes in the input layer receive an input feature pattern and

use a set of weighted parameters to generate an image of the

input pattern. In this network, there are two connection

values (weights) between input nodes and output nodes; one

connection represents the lower bound for this classical

domain of the features, and the other connection represents

the upper bound. The connections between the j-th input

node and the k-th output node are wL
kj and wU

kj.

This image is further enhanced in the process character-

ized by the output layer. Only one output node in the output

layer remains active to indicate a classification of the input

pattern. The operation mode of the proposed ENN can be
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separated into the learning phase and the operation phase.

The learning algorithm of the ENN is discussed in the next

section.

3.2. Learning algorithm of the ENN

The learning of the ENN can be seen as supervised

learning; the purpose of learning is to tune the weights of the

ENN to achieve good clustering performance or to minimize

the clustering error. Before the learning, several variables

have to be defined. Let training pattern set be X ;
{X1;X2;…;XNp

}; where Np is the total number of training

patterns. The i-th pattern is X
p
i ; {x

p
i1; x

p
i2;…; x

p
in}; where n

is the total number of the feature of patterns, and the

category of the i-th pattern is p: To evaluate the clustering

performance, the total error number is set as Nm; and the

total error rate ET is defined below:

ET ¼
Nm

Np

ð7Þ

The detailed supervised learning algorithm can be described

as follows:

Step 1: Set the connection weights between input nodes

and output nodes by the matter-element model of extension

theory:

Rk

Nk; c1;Vk1

c2;Vk2

..

.

cn;Vkn

2
66666664

3
77777775

k ¼ 1; 2;…; nc ð8Þ

In the extension theory, cj is the j-th characteristic

(feature) of Nk and Vkj ¼ kwL
kj;w

U
kjl are the classical

domains of the k-th cluster ðNkÞ about the j-th feature

cj: The range of classical domains can be directly obtained

from previous requirement, or determined from training

data as follows:

wL
kj ¼ Min

i[Np

{xk
ij} ð9Þ

wU
kj ¼ Max

i[Np

{xk
ij} ð10Þ

Step 2: Calculate the initial cluster center of every

cluster

Zk ¼ {zk1; zk2;…; zkn} ð11Þ

zkj ¼ ðwL
kj þ wU

kjÞ=2 ð12Þ

for k ¼ 1; 2…nc; j ¼ 1; 2…n

Step 3: Read the i-th training pattern and its cluster

number p

X
p
i ¼ {x

p
i1; x

p
i2;…; x

p
in}; p [ nc ð13Þ

Step 4: Use the proposed ED to calculate the distance

between the training pattern X
p
i and the k-th cluster as

follows:

EDik ¼
Xn

j¼1

lx p
ij 2 zkjl2 ðwU

kj 2 wL
kjÞ=2

lðwU
kj 2 wL

kjÞ=2l
þ 1

" #
ð14Þ

for k ¼ 1; 2;…; nc

The proposed distance is a modification of ED (Cai,

1983). It can be graphically presented as Fig. 2 it can

describe the distance between the x and a range kwL;wUl:
From Fig. 2, we can see that different ranges of classical

domains can arrive at different distances due to different

sensitivities. This is a significant advantage in classification

applications. Usually, if the feature covers a large range, the

requirement of data is fuzzy or low in sensitivity to distance.

On the other hand, if the feature covers a small range, the

requirement of data is precision or high sensitivity to

distance.

Step 5: Find the kp; such that EDikp ¼ Min{EDik}: If

kp ¼ p then go to Step 7; otherwise Step 6.

Step 6: Update the weights of the p-th and the kp-th

clusters as follows:

Fig. 2. The proposed extension distance (ED).

Fig. 1. The structure of extension neural network (ENN).
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(a) Update the centers of the p-th and the kp-th clusters:

znew
pj ¼ zold

pj þ hðx
p
ij 2 zold

pj Þ ð15Þ

znew
kpj ¼ zold

kpj 2 hðx
p
ij 2 zold

kpj Þ ð16Þ

(b) Update the weights of the p-th and the kp-th clusters:

wLðnewÞ
pj ¼ wLðoldÞ

pj þ hðx
p
ij 2 zold

pj Þ

wuðnewÞ
pj ¼ wuðoldÞ

pj þ hðx
p
ij 2 zold

pj Þ

8<
: ð17Þ

wLðnewÞ
kpj

¼ wLðoldÞ
kpj

2 hðx
p
ij 2 zold

kpj Þ

wuðnewÞ
kpj

¼ wuðoldÞ
kpj

2 hðx
p
ij 2 zold

kpj Þ

8<
: ð18Þ

Where h is a learning rate. The result of tuning two cluster’s

weights is shown in Fig. 3 clearly indicating the change of

EDA and EDB: The cluster of pattern xij is changed from

cluster A to B due to EDA . EDB: From this step, we can

clearly see that the learning process is only to adjust the

weights of the p-th and the kp-th clusters. Therefore, the

proposed method has a speed advantage over other

supervised learning algorithms, and can quickly adapt to

new and important information.

Step 7: Repeat Step 3 to Step 6, if all patterns have been

classified, then a learning epoch is finished.

Step 8: Stop, if the clustering process has converged, or

the total error rate ET has arrived at a preset value,

otherwise, return to Step 3.

3.3. Operation phase of ENN

Step 1: Read the weight matrix of ENN

Step 2: Calculate the initial cluster centers of every

cluster using Eqs. (11) and (12)

Step 3: Read the tested pattern

Xt ¼ {xt1; xt2;…; xtn} ð19Þ

Step 4: Use the proposed ED to calculate the distance

between the tested pattern and every existed cluster by

Eq. (14)

Step 5: Find the kp; such that EDikp ¼ Min{EDik}; and

set the Oikp ¼ 1 to indicate the cluster of the tested pattern.

Step 6: Stop, if all the tested patterns have been

classified, otherwise go to Step 3.

4. Experimental results

In this paper, the Iris data classification problem (Chien,

1978) and vibration diagnosis problems (Li, Sun, Liao,

Chen & Hu, 1999; Li, Sun, Hu, Yue, Tang & Wang, 2000)

are used to illustrate the effectiveness of the proposed ENN.

4.1. Iris data classification

There are 150 instances in the Iris data; it can be divided

into three categories with the distinguishing variables being

the length and width of sepal and petal. In this case, the

structures of the proposed ENN are three output nodes and

four input nodes. To prove the efficiency of the proposed

ENN, two test cases is given in the following:

Case 1: If the system randomly chooses 75 instances

from the Iris data as the training data set, and let the rest of

the instances of the Iris data are the testing data set. Fig. 4

shows the learning curves of the proposed ENN with

different learning rates. It is clear that the training time of

the proposed ENN is quite economical with about 4 epochs

for h ¼ 0:1 and about 13 epochs for h ¼ 0:01: Table 1

shows the comparison of the experimental results of the

proposed ENN with other typical neural networks. It should

Fig. 3. The results of tuning cluster weights: (a) original condition; (b) after

tuning. Fig. 4. The learning curves of Iris data classification problem.
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be noted that structure of the proposed ENN is the very

simple, only 7 nodes and 24 connections is needed.

Moreover, the proposed ENN-based also permits fast

adaptive process for a large amount of training data or

new information, because the learning of ENN is only to

tuning low-bound and upper bound of the excited connec-

tions. It can be seen from the Table 1 that the proposed ENN

has a shorter learning time than the traditional neural

networks. As well, the accurate rates are quite high with

about 100 and 96% for training and testing patterns,

respectively. On the other hand, the proposed ENN can

take expert experiences before learning, and can also

produce meaningful output after learning, because the

optimal classified boundary of the features are clearly

determined.

Case 2: If the training data set contains 150 training

instances (i.e., the full Iris data) and the testing data set is

equal to the training data set containing 150 training

instances. Table 2 compares the performance of the

proposed ENN with several other fuzzy classification

methods on the same data set. It can be seen that the

proposed ENN is at least as good as the other methods, but it

has a shortest learning times. Moreover, the proposed ENN

permits fast adaptive process for significant and new

information, and it is easy to acquire knowledge and

maintain the classification database.

4.2. Vibration diagnosis of generator sets

The vibration diagnosis of generator set is based on the

principle that components in engineering systems and plants

produce vibration during operation. If a generator set is

operating properly, vibration conditions are usually small

and constant, but when faults grow or some of the dynamic

processes in the machine change, the vibration signature

also changes. Therefore, diagnostic information can be

supplied by the spectrum of the vibration signal. In

agreement with past studies (Li et al., 1999, 2000), the

typical six values (amplitude of ,0.4f, 0.4f–0.5f, f, 2f, 3f,

and .3f) are selected for vibration fault diagnosis, and the

detailed trained data are shown in Table 3. To compare

diagnosis performance, the diagnosis results with different

two different classification methods (Li et al., 1999, 2000),

Table 2

Comparison of the average classification accuracy rate for different method

Methods Learning times

(epochs)

Average classification

accuracy rate

Hong and Chen’s method 200 96.67%

Hong and Chen’s method 200 97.33%

Wang-et al., method 200 97.33%

Yu and Chen’s method 200 97.33%

Proposed ENN method 4 97.33%

Table 3

Tested data of generator sets

Gen. no. Input data Fault types

,0.4f 0.4f–0.5f 1f 2f 3f .3f

1 3.35 46.6 12.15 1.94 2.3 3.67 F1

2 4.43 51 11.02 3.02 1.3 2.43 F1

3 3.29 50 11.61 1.24 0.9 1.3 F1

4 5.72 46.3 12.31 3.62 1.5 0.59 F1

5 6.32 45.8 15.23 3.56 2.3 3.19 F1

6 1.51 3.29 52.92 6.59 2.5 2.54 F2

7 2.43 1.19 54.49 4.64 0.8 1.78 F2

8 0.54 2.92 48.82 6.64 3.9 1.51 F2

9 0.81 1.73 52 6.43 3.6 1.89 F2

10 1.24 1.35 49.79 4.64 1.0 2.27 F2

11 1.78 1.46 22.46 23.8 19 8.59 F3

12 0.92 1.24 30.08 22 16 5.67 F3

13 0.65 2.11 21.98 26.2 18 11.1 F3

14 1.13 0.92 24.46 22.3 15 15.8 F3

15 0.92 1.40 26.08 26 20 11.4 F3

F1, Oil-resonance fault; F2, imbalance fault; F3, misalignment fault.

Table 1

Comparison of the classification performance of various neural networks

Model Structure No. of connections Learning times (epochs) Training error Testing error

Perceptron 4-3 12 200 0.173 0.213

MLP 4-4-3-3 37 50 0.027 0.040

PNN 4-75-3 525 1 0.0 0.053

LVQ 4-15-3 105 20 0.8 0.053

CPN 4-20-3 140 60 0.107 0.160

ENN 4-3 24 4 0.0 0.040

MLP, Multilayer perceptron; PNN, probabilistic neural network; LVQ, learning vector quantization; CPN, counter propagation network; ENN, extension

neural network; training set comprised 75 data points and testing set comprised the remaining data points.

Table 4

Learning results using different neural networks

Classifiers MLP AWN ENN

Structure 6-13-3 6-13-3 6-3

Learning speed (epochs) 2561 900 2

Accuracy 100% 100% 100%

AWN, Adaptive wavelets network.
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i.e. MLP and AWN, are shown in Table 4. The two

traditional neural networks were capable of pointing toward

faults, but both need to learn about 2561 and 900 epochs

before fault diagnosis. Contrary, the proposed ENN only

need to learn 2 epochs with equivalent accuracy, and the

structure of the proposed ENN is simpler than the other

neural networks.

5. Conclusions

This paper presents a novel ENN based on the extension

theory and neural network. Compared with traditional

neural networks and other fuzzy classification methods, it

permits an adaptive process for significant and new

information, and gives shorter learning times. The proposed

ENN can solve some special classification problems that the

feature is defined in a range. Moreover, the proposed ED,

the different ranges of classical domain can arrive at

different distances due to different sensitivities, which is a

significant advantage in classification applications. From

the tested examples, the proposed ENN has been proved to

have the advantage of less learning time, higher accuracy

and less memory consumption. Future studies will be

carried out to develop an unsupervised learning algorithm of

the proposed ENN, and to extend this classification

technique to control and develop fault diagnosis systems.
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